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The pillar concept of Foulis and Randall’s school is surely that of a manual of
operations. They chose to regard an operation as the set of possible outcomes,
thereby taking a manual of operations to be a family of partially overlapping
operations. Our previous work is a development of their ideas in two points.
First, each operation is represented not by the set of possible outcomes, but by
the complete Boolean algebra of observable events. Second, since each complete
Boolean algebra B possesses the Scott—Solovay model V® of classical set theory
as its higher-order companion, the Scott—Solovay universes of all the operations
in the manual lump together into a family of Boolean set theories interconnected
by geometric morphisms, which we suggestively designated an empirical set
theory. The principal concern of this paper is to show how to get a cross-
operational set concept by choosing an internal set within V® for each operation
B in the manual and bundling them up. The resulting structure is denominated
an empirical set. We show that the category of empirical sets is complete, is
cocomplete, has a subobject classifier for well-rounded subobjects, and has
exponentials only for degraded objects.

INTRODUCTION

Foulis and Randall (1972; Randall and Foulis, 1973) discussed manuals
of operations so as to formalize the operational and epistemological aspects
of empirical sciences ranging from physics and biology to sociology and
artificial intelligence. In their literature an operation is identified with a set
of possible outcomes and a manual of operations is thought to be a family
of partially overlapping operations. Although each operation enjoys classical
logic and classical statistics, the logic and the statistics of a manual of
operations as a whole are not classical in general, since the existence of a
grand operation refining all the operations in the manual is rather an exception
than a rule.
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In a previous paper (Nishimura, 1993b), as a maverick of Foulis and
Randall’s school, we modernized their ideas by using category theory and
outlined a higher-order generalization. There each operation is represented
by a complete Boolean algebra B, and our empirical set theory is a family
of Scott—Solovay universes V® interconnected by geometric morphisms.
Our ambition is modest enough. We aim ultimately to do the same thing to
so-called quantum logic as Grothendieck did to algebraic geometry some
decades ago.

There we showed that so long as the manual of operations is well
behaved, the real numbers of our empirical set theory can be identified
externally with the observables on its logic. Now a question naturally occurs
to us. What conceptual status does the family of the internal sets of real
numbers within V® for all the operations B in the manual occupy internally?
A similar question occurs for truth-value objects. What role does the internal
truth-value objects within V® for all the operations B in the manual play?

The principal objective of this study is to introduce a cross-operational
notion of an empirical set, which is hopefully an answer to the above questions,
and then to discuss the fundamental properties of the category of empirical
sets. It is shown that the category is complete, is cocomplete, has a subobject
classifier for well-turned subobjects, and has exponentials for degenerate
empirical sets. These are the topics of Section 2. Section 1 is devoted to
preliminary considerations on Boolean set theory. We have made every effort
to render the paper as accessible as possible. As for category theory and
topos theory in particular, familiarity with MacLane (1971) up to Chapter V
and an elementary textbook on topos theory such as Goldblatt (1979) should
be more than sufficient. Even the definition of a geometric morphism is not
a prerequisite. Since the details of the construction of V® are appreciably
tedious, we choose to use the category BSH(B) of sheaves over B instead.
We prefer to do everything as concretely as possible rather than pursue full
sophistication. The rest of this section is devoted to preliminaries on orthogo-
nal categories, manuals, and Boolean locales, in that order. For the details
of orthogonal categories and manuals of Boolean locales the reader is referred
respectively to Nishimura (1995a) and Nishimura (19935), though familiarity
with them is not obligatory.

Orthogonal Categories

A pair (8, 03y) of a category & and a class 03, of diagrams in & is
called an orthogonal category if it satisfies the following conditions:

(1) The category & has an initial object. ]
(2) Every diagram in 03 is of the form {X, S Yhea
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For any small family {X}, <4 of objects in §& there exist an object
Y in & and a family {f\} .4 of morphisms f,: X, — Y in &
such that the diagram {X, —f—x> Y}ca lies in D3g.

Given a small family {X,},.a of objects in §, if diagrams {X,
S Yheaand {X, 3 Z}\ <4 lie in DS, then there exists a unique
morphismh: Y — Z i m & such that g, = h Of, foreach A e A.
Given diagrams {Y, % Z}a and {X; ——> YiJoea, A € A) in
&, the diagram {X; i—a Z\\ € A and § e A,} lies in 03y iff
all the diagrams {Y) by Z}ea and {X5 = Yy)sen, (M € A) lie
in 034, where the ?ets A, are assumed to be mutually disjoint.
If a diagram {X; = YIA € A and 8 € A,} lies in 03y, then
there exist diagrams {Xj5 bl Zy\}sen, N € A) and {Z, 3 Yhen
such that f; = h, © g5 for any A € A and any 8 e A,, where
the sets A)\ are assumed to be mutually dlSJOlnt

If {X, 5 Y}.ca is a diagram in § and {Z; sl Y}sca is also a
diagram in & with Z; bemg an initial object of & for each 8 e
A then the diagram {X, 3 Y}ca is in 08 iff the diagram {X,
3 Yhea U {Zs B Y)sea is in 08y,

If f: X — Y is an isomorphism in &, then the diagram {X 5 Y}
lies in 0%,.

Given a diagram {X, i); Y}iea in 08, if £, and £, happen to
be the same morphism for some distinct A;, N\, € A (so that
X,, = X),), then X,, = X,, is an initial object of &.

If a diagram {X — Y} lies in DSy, then f is an isomorphism.
Given diagrams {X,\ —9 Y}icoa and {X; 5 Y)sca i in &, if both
the d1agram {X, —-) Y},ca and the diagram {X, —> Yhea U

{X; il Y}sc4 are in 03, then Xj is an initial object for each &
e A.

Unless confusion may arise, the category 8 itself is called an orthogonal
category by abuse of language. A diagram {X, > Y},ca in 05y is called
an orthogonal sum diagram, in which Y is called an orthogonal sum of X,’s
and is denoted by 3, .4 ©D X,. Thus the class 03y, is the class of orthogonal
sum diagrams in &. A morphism f: X — Y is called an embeddmg if there
exists a morphism g: Z — Y in & such that the diagram X LY & 7 lies
in 034. Two embeddings f: Y — X and g: Z — X with the same codomain
are said to be equivalent if there exists an isomorphism h: Y - Z in & such
that f = g O h. An object in & is called ¢rivial if it is an initial object of &.
A trivial object of & can be regarded as the orthogonal sum of the empty
family of objects in .
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Manuals

Let & be an orthogonal category and ¢ a subcategory of it. A diagram
in § is said to be in N if all the objects and morphisms occurring in the
diagram lie in . Objects X and Y of I are said to be M-orthogonal, in
notation X Ly Y, if there exists an orthogonal sum diagram X S57&Y
of & lying in IN. An object of I is said to be Wi-trivial if it is a trivial
object of & and also an initial object of ¥. An object X of N is said to be
W-maximal if for any object Y of I, X Ly, Y implies that Y is I-trivial.
Objects X and Y of I are said to be M-equivalent, in notation X =y; Y,
provided that for any objects Z of I, X Ly, Z iff Y Lgy Z. Obviously J%-
equivalence is an equivalence relation among the objects of J%. We denote
by [X]uy the equivalence class of an object )g of I with respect to Y-
equivalence. An orthogonal sum diagram {X, —> X}, of & lying in % is
said to be an orthogonal IMN-sum diagram if for any orthogonal sum diagram
X, N x Trea of & lying in 3N the unique morphism g: X — X' of & with
g Of, = f} for any A € A belongs to I, in which X is called an orthogonal
M-sum of X,’s and is denoted by 2\ .o Dy X,.. If A is a finite set, say, A
= {1, 2}, then such a notation as X, Dy X, is preferred. Note that an IR-
trivial object of YN, if it exists, can be regarded as an orthogonal 2%-sum of
the empty family of objects of . A morphism f: X — Y is called an -
embeda’mg if there exists a morphism g: Z — Y such that the diagram X
XY & Z is an orthogonal -sum diagram. Given objects X and Y of I,
if there exists an -embedding f: X — Y in N, then we say that X is an
MN-subobject of Y.

Given an orthogonal category &, a manual in &, or a &-manual for
short, is a small subcategory of & abiding by the following conditions:

(12) For any pair (X, Y) of objects in I, there exists at most a sole
morphism from X to Y in .

(13) There exists at least a trivial object of & in JX.

(14) Every trivial object of & in I is M-trivial.

(15) For any objects X, Y in I, if there exists a morphism from X
to Y in I, then Y Ly Z implies X Ly Z for any object Z in .

(16) For any objects X, Y in IR with X Ly, Y, there exists an object
Z of the formZ = X @y Y in K.

(17) For any object Z of the form Z = X @y, Y in I, X Ly W and
Y Ly Wimply Z Ly W for any object W in JK.

(18) For any objects X and Y in ¥, X =g, Y iff there exists an object
Z in YN such that X Lyz Z, Y Ly Z, and both of X @y Z and
Y ®yp Z are IP-maximal.
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(19) For any commutative diagram
x—E sy
g\ /‘h
Z
of &, if fis in I and h is an Pi-embedding, then g is in .

A §-manual I is said to be rich if it satisfies the following condition:

(20) For any object X in N and any embedding f: Y — X in &, there
exists an IM-embedding £': Y’ — X in I such that f and ' are
equivalent in §.

A S-manual I is said to be completely coherent if it satisfies the
following condition:

(21) For any infinite family { X}, <4 of pairwise i-orthogonal objects
in Y%, there exists an object Z in I with Z = 3, .4 Dy X,

Boolean Locales

The category of complete Boolean algebras and complete Boolean homo-
morphisms is denoted by Bool. The dual category of Bool is denoted by
BLoc. Its objects are called Boolean locales. If we regard a Boolean locale
X as an object in Bool, it is often denoted by P(X) for emphasis, though
X and P(X) denote the same entity. The opposite £°P of a morphism f: X —
Y in BYoc¢, which is a complete Boolean homomorphism from P(Y) to
P(X), is usually denoted by P(f). The category BLoc is cocomplete, and
the pair (|BLOC, chygeo) is an orthogonal category, where Py, is the class
of coproduct diagrams in BXoc. Unless stated to the contrary, the category
$BLoc is to be regarded as an orthogonal category in this sense.

A completely coherent rich manual in the orthogonal category BLoc is
called a manual of Boolean locales. A pristine example of a manual of
Boolean locales can be provided by an arbitrary complete Boolean algebra
B. For each p € B we denote by X, the Boolean locale with P(X,) = Blp
= {q € Blg = p}. The first-class Boolean manual J){g of Boolean locales
over B is a subcategory of the category BZoc whose objects are all X,
(p € B). A morphism f: X, — X, of Boolean locales with p, g € B lies in
My iff p =< g and P(f)(x) = x A p for any x € P(X,).

Given a Boolean locale X, we denote by Ex the Stonean space of the
complete Boolean algebra %P(X). Under the so-called Stone duality, each
p € P(X) corresponds to a clopen (closed and open) subset of Ex, which
is denoted by Ex .
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1. BOOLEAN SET THEORY

This section is essentially a review, and the reader is referred to Bell
(1988), Goldblatt (1979), Johnstone (1977), or MacLane and Moerdijk (1992)
for the general theory of topoi. For pedagogical reasons the exposition is a
bit more leisurely than it should be in a technical paper. To make the paper
accessible to a larger audience, we do not pursue full sophistication or full gen-
erality.

As remarked in Nishimura (19935, p. 1297), every poset and every
complete Boolean algebra B in particular can be regarded as a category. The
objects of the category B are the elements of B. Given a pair (p, g) of objects
of the category B, it is always the case that there exists at most one arrow
from p to g, and there is one iff p =< g. We denote by €ns the category of
sets and functions. A presheaf over B is a contravariant functor & from the
category B to the category Eng, in which, given p, ¢ € B and x € HA(g)
with p = g so that there exists a unique arrow f, , from p to g in the category
B, we often write d,, (x) for A(f, ,)(x).

A (possibly empty) family { py },a of nonzero elements of B is calied
a partial partition of unity of B if p, A p,» = 0 for any A # \'. Given two
partial partitions {p,}r.a and {qy},r of unity of B, the former is said to be
a refinement of the latter if

VieA P = v'yel" aqx (11)
and
for any A € A there exists y € I" such that py, = g, (1.2)

A presheaf s over B is called a sheaf over B if for any partial partition
{Pr}rea of unity of B and any family {x,}\.a with x, e sd(p,) for each A
€ A, there exists a unique x € (Vycq pi) With A, , 1 (X) = x, for each
N e A. Every presheaf s over B has its associated sheaf &§ over B, which
is called the sheafification of sd. For each p € B we denote by s{(p) the set
of all families {(x\, pa)}rea Such that

{Pa}rca is a partial partition of unity of B with

VaeA Py =P (1.3)
x, € A(py) foreach X e A (1.4)

Let si(p) be the quotient set of SA(p) with respect to an equivalence relation
=y, on A(p), where

{(x)u P)\)}AEA E&Q,p {(y)w q)\)}ver iff {P)\})\EA and {qk}yer have
a common refinement {r;};.x such that &Q,&px(xx) =

&(l,&%(y)\) whenever r; =< p, and r; = g,. (1.5)
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We denote by [{(xx, p)real= ap the equivalence class of an element {(x;,
PV hea of d(p) with respect to = ,. For any p, g € B with p = g, we let

‘S‘Zﬂp,q([{(x)u q)\)})\EA]Egg,q) = [{(‘ﬂq)\/\p(x)\)’ /)N Ap)})\eA]ESg’p

We denote by BSH(B) the category whose objects are all presheaves
over B and whose morphisms are all natural transformations between such
contravariant functors. We denote by BSH(B) the full subcategory of
B@hH(B) whose objects are all sheaves over B. If B is regarded as a Boolean
locale X, the categories BSH(B) and BSH(B) are denoted also by BSH(X)
and BSH(X), respectively. It is easy to see that the assignment to each
presheaf s¢ over B of s and to each morphism s: o — B in BSH(B) of
a morphism 7: & — B in BSH(B) with

jp([{(x)\’ p)\)})\eA]ESLP) = [{('4 p)\(x)\)v p)\)})\eA]Eg&p

for each p e B is a functor from BESH(B) to BSH(B), which is denoted by
Ciag. It is easy to see the following result.

Theorem 1.1. The functor Cygy: BEH(B) — BESH(B) is left adjoint to
the inclusion functor ingy: BSH(B) — BSH(B).

We now give an alternative description of the category B&SH(B). A B-
valued set is a pair (X, [+ = -[§) of a set X and a function [- = [} X X
X — B satisfying

[x =x'T§ =[x = £[¥ (1.6)
[x=xBAlx =xEB=[x=x18 (L7

for all x, x’, x" € X. The B-valued set (X, [-=-[§) is often denoted by X
unless serious confusion may arise.

Given a B-valued set (X, [-="-]B), a function a: X — B is called a
singleton if it satisfies

a() Aflx =X = aix) (1.8)
alx) A ax) =[x = X8 (1.9)

for ail x, x' e X. It is easy to see that any x = X gives rise to a singleton
{x} assigning to each x' e X the set [x = x'[ e B. The B-valued set (X,
[-=-IB is said to be complete if every singleton is of the form {x} for a
unique x € X. A B-valued set (X, [- =-]§), even if it is not complete, can
give rise canonically to a complete B-valued set & [-= -]],]%), where X is the
set of singletons of the B-valued set (X, [+ =-[B) and [a = B} = vyex (a(x)
A B() for all o, B in X. The B-valued set (X, [ - = - [§) is called the completion
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of (X, [-=-1%). We denote by BENS(B) the category whose objects are all
B-valued sets and whose morphisms from a B-valued set (X, [-=-]%) to
another B-valued set (Y, [- =-[¥) are all functions f: X X ¥ — B satisfying

[x = xR’ Af&, y) =f,y (1.10)
fen Al =yF=fxy) (L.11)
fa ) Afo,y) =y =yR (1.12)
Vyerfr y) =[x = [} (1.13)

forallx, x’ € X, y,y’ e Y. The full subcategory of BENS(B) whose objects
are all complete B-valued sets is denoted by BEns(B). If the complete
Boolean algebra B is regarded as a Boolean locale X, then categories
BENS(B) and BEN3(B) are denoted also by BEnS(X) and BEns(X),
respectively. It is easy to see that the assignment to each B-valued set (X,
[-=-T¥ of its completion (X, {- =] and to each morphism

i =B ->xl=T}
of the morphism
fE&l=R->&[=F
with
fla, B) = v (@) AB(Y) Af(x,y)) foralla € Xandallp e ¥

yeY

is a functor from BENS(B) to BENS(B), which is denoted by Cypepe. The
following result is well known.

Theorem 1.2. The functor Cysys: BENS(B) — BENS(B) is left adjoint
to the inclusion functor iggn.: BENSB) - BEnI(B).

Now we are going to show that categories BShH(B) and BENS(B) are
equivalent. First we define a functor ®: B&SH(B) — BEnS(B). Let o be a
sheaf over B. We define a set Xy to be the disjoint union of ${(p)’s for all
p € B. We define a function [- =-[} : X4 X X4 — B as follows:

[x =y}, = sup{r e BiIr = pagand &,,(x) =, (»} (1.14)

forx € dA(p)andy e sd(g). It is easy to see that (X, [- = [}, is a complete
B-valued set, which shall be ®(sd). Let s : s{ — 9B be a morphism in BSH(B).
We define a function f: Xy X Xg — B as follows:

£, y) =sup{r e Blr < p Aqands.(sd,,(x)) = B (»} (1.15)

for x € d(p) and y € B(g). It is easy to see that £ is a morphism from
®O(A) to D(B) in BENS(B), which shall be B(s).
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Now we will define a functor ¥: BEN3MB) — BSHB). Let
(X, [-=-1® be a complete B-valued set. We define a presheaf siy over B
as follows:

Ax(p) = {x € X|[x = x[} = p} for peB (1.16)

Forp, g € B with p = g and x € (g), (dy),,(x) shall be
the element of X corresponding to the singleton
yeXox=yBAap (1.17)

It is easy to see that sy is a sheaf over B, which shall be VX, [-=-]B).
Let £ (X, [-=-1% - (¥, [- =% be a morphism in BEnS(B). For each p
€ B we define a function (4),: Ax(p) — sdy(p) assigning to each
x e dy(p) the element (47),(x) of Y corresponding to the singleton y € ¥
= sup(flx, ¥) Ay = y'[}ly" e Y}. Itis easy to see that the range of (s/),
is contained in Ay(p), so that (sp), can be considered to be a function from
Ay (p) to dAy(p). It is also easy to see that the assignment 4, to each p € B
of the function (4),: x(p) = Ay(p) is a morphism from W((X, [-=-8))
to W((Y, [-=-18)) in BSH(B), which shall be ¥(f).
It is not difficult to see the following result.

Theorem 1.3. ¥ O @ is naturally equivalent to the identity functor Ing o,
of the category B&H(B), and & © V¥ is naturally equivalent to the identity
functor Ingns) Of the category BEN3S(B), so that categories BSH(B) and
BENS(B) are equivalent.

The category BSH(B) as well as the category BEnS(B) are known to
constitute a Boolean localic topos, and Theorem 1.3 is only a special case
of the well-known theorem that a Boolean localic topos is determined uniquely
up to equivalence by the complete Boolean algebra of the elements of its
subobject classifier.

Let f: X — Y be a morphism in BRoc. We are now going to define
functors f BSH(X) — BSH(Y) and £ BSHY) - BSH(X), which are
to be called the direct image functor of £ and the inverse image functor of
f, respectively. It is easy to see that for any sheaf s over (X), o 0 P(f)
is a sheaf over ?(Y), which shall be f.4. It is also easy to see that for any
morphism s: s{ — B in BSY(X), 7 P(f) is a morphism from f.s to £. B in
BSH(Y), which shall be fus.

To define the inverse image functor £*: BSH(Y) — BSH(X), we first
define a functor f*: BEns(Y) — BEns(X), which shall assign to each

object (¥, [-=-IY) in BENS(Y) the object (¥, PO =-1Y)) in
BEN3(X) and to each morphism £ X, [-=-[¥Y) - ¥ [-=-FY) in
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BENS(Y) the morphism
M of X PO ="KV - & PEC =-TFY)

in BENS(X). We now define f* to be ¥ 0 Cygys © f* 0 P.
Now it is not difficult to see the following result.

Theorem 1.4. The functor f*: BSH(Y) — BSH(X) is left adjoint to
the functor f.: BESHX) — BSH(Y). It is also left exact.

By using the nomenclature of topos theory, the above theorem claims
that the pair (f:, £*) is a geometric morphism from the topos BSH(X) to the
topos BSH(Y).

Letf: X — Y and g: Y — Z be morphisms in BLoc. It is easy to see
that (g © f). = g. O f.. It is also easy to see that the functors (g O f)* and
f* O g* are naturally isomorphic.

Given a Boolean locale X, since the category B&©H(X) is a Boolean
localic topos, it enjoys all classical mathematics (= mathematics based on
classical logic). Now we will determine concretely sheaves Jx and Ry
standing for the subobject classifier and the set of real numbers within
BShH(X), respectively. The sheaf Tx goes as follows:

Tx(p) = {(r, p)|r € P(X) and r = p} foreach p e P(X) (1.18)

(T, p)) = (rngq, ) for pge PX)withg=p (1.19)
The sheaf %Rx goes as follows:
For each p e P(X), Rx(p) is the totality of
real-valued Borel functions on Ex,p, where two

real-valued Borel functions on Ey , are
identified so long as they coincide except some

meager Borel subset of Ex , (1.20)
For p, g € P(X) with ¢ < p, (Ry),, assigns to each
f € Rx(p) the restriction f|Ex , of fto Ex, a1.2n

Let f: X — Y be a morphism in BYoc. We are going to discuss the
relationship between J'x and Jy and that between Ry and Ry.

Proposition 1.5. There is a natural morphism J¢: Jy — £.9x in

BSH(Y).

Proof. Note that (£.Tx)(p) = Tx(PE)p)) for each p € P(Y). We set

(TH,(r, p)) = (PE)r), PE)(p)) for each (r, p) € Ty(p). It is easy to see
that 7¢ is indeed a morphism from Jy to .5 in BSH(Y). m

Proposition 1.6. The left adjunct T%: £*Ty — T of T¢ is an isomor-
phism in BSH(X).
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Outline of the Proof. ®(f*Jy) is naturally identified with Cypens
(£ *(®(Ty))), which is in turn identified with ¥(Jx). To see this, note that
each (r, p) € ®(Jy) determines a singleton ay, ) on f*(P(Ty)) by

(s, q)) = (r © PE)s)) A p A P(f)(q) for each

(s, ¢) € ®(Ty), where © stands for the symmetric
difference in the complete Boolean algebra P(X),

and note that the underlying set of ®(Jy) and (1.22)
that of £*(®(Jy)) are the same

We should note also that
[(r, p) = (', pHEE,

- v (S, @) A e ,0((s, 9))
.9e®Ty)

forall (r,p), (', p") € ®(Tx) (1.23)

It is not difficult to see that ®(T%) renders this identification between Cyenq
E*(@(Ty))) and V(T x). Therefore J% is an isomorphism.

Proposition 1.7. There is a natural morphism Rf: Ry — Ry in

BSH(Y).

Proof. Note that (£ Rx)(p) = Rx(P(E)(p)) for each p € P(Y). We set
(RHf) = O &y, for each f € Ry(p). It is easy to see that Rf is indeed
a morphism from Ry to f. Ry in BSHY). =

In the next section we will use such self-explanatory notations as
Homy(sA, B) for the totality of morphisms from & to & in BSH(X).

2. EMPIRICAL SET THEORY

To begin with, we define a category to be denoted by BEns. Its objects
are all pairs (X, &) of a Boolean locale X and a sheaf o4 over the complete
Boolean algebra P(X). Given two such pairs (X, &) and (Y, %), the morphisms
from (X, ${) to (Y, B) in BENS are all pairs (f, £*) of a morphism f: X —
Y in BLoc and a morphism f#: B — . in BSH(Y). By dint of the canonical
adjunction Homx(f*%, ) = Homy(%B, f-#), the morphism (£, £%): (X, «)
— (Y, %) can be represented also by (f, f,), where £, f*B — o is the
morphism in BSH(X) corresponding to the morphism f# B — f*o in the
above adjunction. The corresponding representations (f, £#) and (f, f,) of the
same morphism are called the upper and lower representations, and they will
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be used complementarily according to the context. Given morphisms (f,
£%): (X, &) = (Y, B) and (g, g): (Y, B) — (Z, 6) in BENS, their composition
(g, g% O (f, 1) is defined to be (g O f, (g.£%) © g*), where we loosely identify
g(f'sl) with (g O f).sd. As for the lower representation of composition of
morphisms in BEn3, we have the following result.

Proposition 2.1. If (f, £%): (X, o) — (Y, B) and (g, g%): (Y, B) > (Z,
%) are represented lowerly by (f, f,) and (g, g4, respectively, then their
composition (g, g« © (f, £,) is represented lowerly by (g © f, £, © (f*gy),
where we loosely identify f*(g*%) and (g © f)*6.

Proof. By chasing f, around the commutative square
Homy (f*g*€, o) Homy (g6, fi o)

I

Homy (f*gy, o) ]\ Homy (g4, fud)
Homy (f*3, o) = Homy (B, fx A)
we have
fyo(Pgy)— fogy
fg———>
By chasing g; around the commutative square
Homy (g*6, B) = Homgy (€, g« B)

Hom, (g*€, f#) j/ l Hom, (€, gx, f#)

n

Homy (g*€, fix o) Hom, (4, g« fx 1)

we have

gy — 8"

l l

togyl— 5 (guf¥)ogh

Thus f; O (f*g4) corresponds to (g.£*) © g* under the canonical adjunction
Homyx(f*g*4, s{) = Homg(6, gf.5{). m

We denote by © the forgetful functor from BEnS to BLoc. That is to
say, O(X, ) = X for any object (X, &) in BEn3 and O, £%) = f for any
morphism (f, f%) in BENS.
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As in Nishimura (1995b, Proposition 3.2), it is easy to see the follow-
ing result.

Proposition 2.2. (BENS, cPyens) is an orthogonal category, where
CPaens denotes the class of coproduct diagrams in BEn3.

Outline of the Proof. Here we give only the coproduct construction in
the category BEn3. Let {(X,, «)\)}rca be a small family of objects in
BEns. We note that the coproduct of the family {X,}rca in BRoc is given
by X with P(X) = Il .4 P(X,). The desired coproduct of {(X,, )} rea
in BEn3 is given by (X, o), where A(prer) = hea Ai(py) for any
(P her in PX). =

In the remainder of this paper the category BEnSs is to be regarded as
an orthogonal category in the above sense unless stated to the contrary.

Given a manual I of Boolean locales, we now define a category to be
denoted by EEng(N). Its objects are all functors &: M — BENS satisfying
the following conditions:

(2.1) It maps orthogonal J-sum diagrams to orthogonal diagrams
in BEns.
(22) O o § is the identity functor.

Let # be such a functor. For any Boolean locale X in I, if H(X) =
(X, #A), then o is denoted by Fsy(X). For any morphism f: X — Y in K,
if %) = (F, %), then % FTu(Y) — F*Fsp(X) is denoted by F#(f) and
f#: f*%}Sh(Y) -> %Sh(X) is denoted by 8’#(0

Given such functors % and &, morphisms from & to & in EEns(N)
are all assignments ¢ to each Boolean locale X in 2 of a morphism ¢x:
FsnX) = Gg(X) in BSYH(X) satisfying the following condition:

(2.3)* For any morphism f: X — Y in R, the diagram

it
Fan (V) 57 @ £xen (X)
Py frox
@, (Y) T > £, @, (X)

is commutative.

Proposition 2.3. The above condition (2.3) is equivalent to its following
lower version:
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(2.3)s For any morphism f: X — Y in IR, the diagram

T (B
£y (Y) # 5 Fa(X)
f* ¢y ¢X
f* @Sh (Y) @# (f) ®Sh (X)

is commutative.

Proof. The equivalence of (2.3)* and (2.3)4 follows readily from the
following commutative diagram:

Homy (Fs, (Y) , £ (X)) = Homy (£* Fg (Y) , Fs (X))

Homy (&Fsn (Y) , fxpx) l l Homy (£* Fs, (Y), ¢x)
Homy (Fs, (), 485, (X)) = Homy (F* Fs, (V) , Gy, (X))

Homy (¢y, £:8q, (X)) Homy (f*¢y, s, (X))

Homy (&, (Y) , £, (X))

Homy (F* G, (Y), B, (X)) H

The composition ¥ © ¢ of morphisms ¢: § > & and ¢: & — O in
EEns (M) is defined to be the assignment to each Boolean locale X in I
of ix O @x. For each Boolean locale X in )¢ we denote by Ax the forgetful
functor from EENS(N) to BSH(X), which assigns to each object ¥ in
EEns(IN) the object Fsp(X) in BESH(X) and to each morphism ¢: F — &
in €En3(WY) the morphism @x: Fsp(X) = Ggy(X) in BSHX).

Each object of €&Ens(IMN) is called an empirical set over M, and the
category EEn3(IN) is called the empirical set theory over J.

Before embarking upon the general theory of empirical set theory, we
present some examples of empirical set theories and empirical sets, which
will put down our midair notions onto earth.

Example 2.4. Let B be a complete Boolean algebra and g the first-
class Boolean manual of Boolean locales over B. It is easy to see that the
category €Ens(Wp) is equivalent to the category BSH(B).

This example shows that our empirical set theory €Eng(IMM) over an
arbitrary manual I of Boolean locales is a natural generalization of Boolean
set theory.

We will keep I denoting an arbitrarily chosen but fixed manual of
Boolean locales up to the very end of this section.
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Example 2.5. We will define an empirical set T over JX, which is
intended to stand for the empirical set of truth values within the empirical
set theory €Eng(IX). For each Boolean locale X in %, we set T(X) = Ty.
For each morphism f: X — Y in X, Proposition 1.5 shows that there is a
natural isomorphism J¢: Ty — £.9, which shall be taken as T#{). It is
not difficult to see that ¥ is indeed a well-defined empirical set over .

Example 2.6. We will define an empirical set : over I, which is
intended to represent the empirical set of real numbers within the empirical
set theory €Eng(WL). For each Boolean locale X in I, we set R(X) = Ry.
For each morphism f: X — Y in X, Proposition 1.7 shows that there is a
natural isomorphism R{: Ry — £.Rx, which shall be taken as R#(F). It is
not difficult to see that R is indeed a well-defined empirical set over Y.

Now we are going to show that, roughly speaking, the category
EEns (M) is not a topos only in that exponentials do not exist in general.

Proposition 2.7. The category €Ens(I) has products for any small
family of objects.

Proof. Let {§\}rea be a small family of objects in €Ens(Ik). For
any Boolean locale X in IR, since BSH(X) is complete, there exists a
product diagram

(@) .

{slx — FIsXhaen  in BSHX)
For any morphism f: X — Y in ¢, since the functor f.. BSH(X) — BSH(Y)
preserves limits,

(F.sty =25 £(F )9 e

is a product diagram in BSH(Y). Therefore there exists a unique morphism
% Ay — f.dx in BSH(Y) such that (F)*E) © (e)y = E*(@y)x) O 7 for
any A e A. It is not difficult to see that there exists a unique object § in
EEng(I) such that Fsu(X) = Ay for any Boolean locale X in ¢ and
&*®) = £* for any morphism f in J)i. It is easy to see that the assignment
@ to each Boolean locale X in I of (¢, )x is a morphism from & to &, for
each A € A. Now it remains to show that for any family {& —% F,\ }ca
of morphisms in €En3(MN), there exists a unique morphism x: & — F with
@) O x = ¢, for any A e A. Since

(B0 2 (F0sn(X) Jaca

is a product diagram in *BSH(X) by definition for each Boolean locale X in
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IR, there exists a unique morphism xx: ®gu(X) = Fsu(X) in BSH(X) with
(e0x © Xxx = (U)x for all A e A. Thus it suffices to show that for any
morphism £: X — Y in MM, F#E) 0 xy = (Fxx) © &), for the assignment
X to each Boolean locale X in 2R of xx would be the desired morphism in
EEn3(IN). For each A & A we have a commutative diagram

~o#
- oS LN T s D

@)y (),
% & e N D 85 )0 %) et
W), £,

e 1)—S*O ¢ @) o0 ]
in BSH(Y), for which we get
(f(ex) © (Fixx) © B#(H)

= (f*Wx) © B*H)

= (FVAD © Wy

= (F7 0 (e)y O Xy

= (f(e)x) © F* D O xy
Since

Ex(pa)x

{f*g”sr](x) — f*(%A)Sh(X)}AeA

is a product diagram in BSYH(Y), F E) © xy = (Fixx) © G*(), which was
the desired equality. =

By the same token, we have the following result.

Proposition 2.8. The category EEns(M) has equalizers for any paral-
lel morphisms.

Theorem 2.9. The category EEns(IN) is complete.

Proof. Tt is well known that a category of products and equalizers is
complete, for which the reader is referred, e.g., to MacLane (1971, Chapter
V, §2). Therefore the desired result follows from Propositions 2.7 and 2.8. =
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The proofs of Propositions 2.7 and 2.8 give also the following result.

Proposition 2.10. Given a diagram F: J — €Eng(W) and a cone 7: §
= F in EE&ns(PY), 7 is a limiting cone iff the cone Ag O 71 Ax(F) = Ax
O F is a limiting cone in BSH(X) for any object X in M.

The discussion from Proposition 2.7 through Proposition 2.10 can be
dualized.

Proposition 2.11. The category €En3(IN) has coproducts for any small
family of objects.

Proof. Let {§,}rea be a small family of objects in EEns(N). Let X
be a Boolean locale in . Since BSH(X) is cocomplete, there exists a
coproduct diagram

(F0snX) 25 sy hren

in BSHX). Let f: X — Y be a morphism in JN. Since the functor
£* BEY(Y) —» BSH(X) preserves colimits,

Ny

{ f*(%)\)Sh(Y) —> f*dylica

is a coproduct diagram in B&SH(X). Therefore there exists a unique morphism
£y £*sly — sdx in BSH(X) such that ())x O (F)AD = £ © E*(pr)y) for
any A € A. It is not difficult to see that there exists a unique object § in
EENS(N) such that Fsy(X) = oAy for any Boolean locale X in ¢ and
% 4f) = £, for any morphism f in J)X. It is easy to see that the assignment
@, to each Boolean locale X in Y% of (¢))x is a morphism from &, to & for
each A € A. Now it remains to show that for any family {3, =% &}, 4
of morphisms in EEns(MN), there exists a unique morphism x: §F — & with
X O @, = , for any A e A. Since

(en)X

{(%)\)Sh(x) —— %Sh(x)})\e/\

is a coproduct diagram in BSH(X) by definition for each Boolean locale X
in IR, there exists a unique morphism xx: Fsp(X) — Gg(X) in BSH(X)
with xx O (@)x = (by)x for all A e A. Thus it suffices to show that for any
morphism f: X = Y in IR, xx © Fu«) = G« o (F*xy), for the assignment
x to each Boolean locale X in )t of xx would be the desired morphism in
EEns(M). For each A e A we have a commutative diagram
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p"%’sn (Y) —ML Tsp (X) ——

Pk(“PA)Y (“Px)x

P, £ )5 (VD (55 %) %

(D), (W),

BN UBINCMG P
in BSH(X), for which we get
G#(F) o (F*xy) © E*(pr)x)
= G o (F*Wn)y)
= (W)x O (B uf)
= Xx © (@a)x O (Fi)#
= Xx © F«b) © (F*(@\)y)

Since

NG

{f*(%)\)Sh(Y) — TV hea

is a coproduct diagram in BSH(X), xx © Fuf) © = G L) o (F*xy), which
was the desired equality. m

By the same token, we have the following result.

Proposition 2.12. The category EEn3(IK) has coequalizers for any
parallel morphisms.

Just as Propositions 2.7 and 2.8 led to Theorem 2.9, Propositions 2.11
and 2.12 lead to the following result.

Theorem 2.13. The category EEns(IMN) is cocomplete.
The proofs of Propositions 2.11 and 2.12 establish the following.

Proposition 2.14. Given a diagram F: J — €En3(¢IN) and a cone : F
= & in €Enz(MN), 7 is a limiting cone iff the cone Ag O T: Ax* F > Ax(¥)
is a limiting cone in BSH(X) for any object X in IN.
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For each Boolean locale X in IR, we fix a terminal object 7 in the
category BSH(X) and denote by Tx the truth arrow 7x — Jx in the topos
BSH(X). We denote by 1 the terminal object of €Eng(W) with 15,(X) =
7% for each Boolean locale X in JN. The assignment to each Boolean locale
X in IN of Ty is easily seen to be a morphism 1 — ¥, and is denoted by
T. The rest of this section is consecrated to showing that the morphism T:
1 — ¥ plays a role of a subobject classifier for a well-behaved class of
subobjects, and that exponentials exist for highly degenerative empirical sets.
To this end, we first need the following resuit.

Proposition 2.15. A morphism ¢: § — & in €€Eng(IN) is a monomor-
phism iff ¢x: Fsn(X) = Ggy(X) is a monomorphism in BSH(X) for every
Boolean locale X in JN.

Proof. We know well (cf. Schubert, 1972, 7.8.9) that in any category
& and for a morphism f: a — b in R, fis a monomorphism iff the diagram

id
a a a
a, l l ;
a —> b

is a pullback. Thus the desired result follows at once from Proposition
2.10. m

f

A monomorphism ¢: § — & in €Eng(IN) is called a regular monomor-
phism if the diagram

PFa(Y) 50 5
N
@& (Y) T > Be(X)

is a pullback square for any morphism f: X — Y in JR. Two regular monomor-
phisms ¢: § — & and ¢: € — & with the same codomain & in €Ens¢R)
are said to be equivalent if there exists an isomorphism y: & — € in
EEns () such that ¥ © x = ¢. An equivalence class with respect to this
equivalence relation on the regular monomorphisms into & is called a regular
subobject of &.

Theorem 2.16. For any regular monomorphism ¢: § — & in EEns¢N),
there exists a unique morphism x: & — ‘T making the diagram
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_-—x
CN @
=

N4

a pullback square.

Proof. If such x exists, then Proposition 2.10 claims that for each Boolean
locale X in IR, xx should be the unique morphism in the topos BSH(X)
making the diagram

Fan(X)- Px Gs(X)
/X X ?TX

a pullback square. Therefore it suffices to show that the family {xx}xcopeme
of morphisms xx: &g (X) — Tx thus chosen for all Boolean locales X in
M makes the diagram

iy é

P Fa(Y) v T,
S l \[ 9#
Fsn(X) Xx > ?Tx

commutative for each morphism f: X — Y in I, which would guarantee
that the assignment x to each Boolean locale X in ¥ of xx is the desired
morphism in €Ens(W). To see this, let us consider the diagram

f*
& (V) % G, (Y)
Fad Gy

hd

Fa X)) — P @, (X)

Xx

L T 2
7 —> T

X
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Since the upper and lower squares are pullback squares, the outer rectangle
is also a pullback square by the so-called pullback lemma (cf. MacLane,
1971, Chapter III, §4, Exercise 8). Let us consider also the diagram

f*
P (Y) —— Y 5 PG, (Y)

Pk?’x kaY
v o N
£7, N
._Gf f
N h #
X 0%
7 g

X

Since t* preserves pullbacks, the upper square is a pullback square, while
Proposition 1.6 claims that the lower square is also a pullback square. Thus
the outer rectangle of the above diagram is also a pullback square by the
pullback lemma again. Since ¢y Fsn(Y) = Gs(Y) is a monomorphism by
Proposition 2.15 and f* preserves monomorphisms, the morphism f*@y:
F*Fsn(Y) — £*&¢(Y) is a monomorphism. Therefore the desired commuta-
tivity of the second diagram follows. m

The converse of the above theorem holds.
Theorem 2.17. If the diagram

¥ hi ®
1 M s T

is a pullback square in EEng(M), then the morphism ¢: § — & is a
regular monomorphism.

Proof. Since T is a monomorphism and the above square is a pullback
diagram, ¢ is a monomorphism (cf. MacLane, 1971, Chapter 111, §4, Exercise
5). Therefore it suffices to show that the diagram

PFar(Y) 50 & %)
N
f*@sn(y) 7 ®Sh(x)

Gy
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is a pullback square for each morphism f: X — Y in . As in the proof of
Theorem 2.16, the outer rectangle of the diagram

f*
PG (V) ——— Y3 PG, (Y)

.,
NA T A
P7, Y SpT
o f
s
v TX
7 > g9

is a pullback square. This implies that the outer rectangle of the diagram

o~ £
P ¥ (V) ———— PG, (Y)

g#(ﬂ @#(f)
,
B (X) — 56, (X)
Xx
v Tx N4
7y > g,
is a pullback square, for the diagram
£
oY) v g
Sy J, l T 4
Sn(X) Xx > T

is commutative, so that the outer rectangles of the second and third diagrams
are the same. Since the lower square of the third diagram is also a pullback
square, its upper square should be a pullback square by the pullback lemma,
which is the desired result. m

By Theorems 2.16 and 2.17 we can see easily that within the category
EEns(IN) the empirical set T plays a role of a subobject classifier for regular
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subobjects. We conclude this section by showing that under highly restrictive
conditions even exponentials exist within €En3(Jk).

An empirical set § over I is called flar if for each morphism f: X —
Y in M, FL0): £*Fsu(Y) — Fsn(X) is an isomorphism.

Theorem 2.18. Given flat empirical sets & and & over I, there exist
an empirical set  over I and a morphism o: @ X § — & in EEns(N)
such that for any empirical set & over I and any morphism ¢: € X &
— (& there exists a unique morphism {: & — © making the following
diagram commutative:

o X
Pxid T &
ExF /‘b

Proof. For each Boolean locale X in R, let #x be the exponential of
&s(X) by Fsn(X) in the topos BSH(X) and ¢x its evaluation arrow #Hy X
Fsn(X) = G, (X). For each morphism f: X — Y in I, let £, be the exponential
transpose of & Af) © (f*@y) O (idg*HHy X FL)™1). It is not difficult to see
that there exists a unique empirical set £ over ¥ such that Hg(X) =
for each Boolean locale X in I and H L) = £, for each morphism f: X —
Y in YR It is easy to see that the assignment ¢ to each Boolean locale X in
I of @x is a morphism from § X § to & in EE€ng(W). It is obvious that
if such s as depicted in the theorem exists, then Jsx is the exponential transpose
of Yk in the topos BSH(X) for each Boolean locale X in . Therefore it
remains to show that the family {Jix}wa(we) so chosen makes the diagram

Pk@Sh(Y) @#(f) BEd ®Sh(x)
i, | | -
t*-bsr-(Y) @#(ﬁ 4 Sjsn(x)

commutative for each morphism f: X — Y in 3. To this end, since Hg,(X)
is the exponential of @g,(X) by Fsn(X) and @x: Dsp(X) X Fsn(X) = Gn(X)
is the evaluation arrow in the topos BSH(X), and since the morphism idg*
&g, (Y) X F«F) is an isomorphism, it suffices to show that

ex O ((Ix © €4, (D)) X idgg,x) © (pssgury X Fo)
= @x O (D uh) 0 F¥y) X idz, x) © (e X Fal))
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which is demonstrated as follows:
@x O ((Jix 0 G «F))) X idggx) © (dpegny X TD)
= ¢x © (Ix X idggxy) © (C4f) X Fu(b))
= Pix O (C ) X FLL))
= G F) © £*Yy
= B 4F) 0 f*oy 0 (F*liy X ide*zg,v)
= ¢x 0 (DAD X FuD) O ¥y X id*zg,m)
= @x O (D LF) © F*iy) X idy FenX) © (de*eg o X FuE))

This calculation was an arrow-chasing in the following diagram, where the
above calculation has derived the commutativity of the outer rectangle from
the commutativity of all the smaller diagrams:

G (F)X R (F N
PG (NPT (V) — 2 DX D 6 x)xga X)
\*
bt Did | 26, 0—ED Sl | b ™

/upy Py

V
P DD (V) BT @ DB 0 W
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